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Substitution of equation (20) into equation (15) gives a 
condition for instability: 1. 

4 dD 
~~. ? < Real(q) < 0. 

(v’n)D(?) dc 
(21) 2, 

It is evident that the more negative the term dD/d? is the 
larger the domain of q where instabilities occur. In the case 3. 
of a constant diffusion coefficient, inequalities (20) and (21) 
reveal that no instability can occur. 

The above analysis does not confirm the hypothesis that 
a minimum in the D- (’ relationship is necessary to induce 4. 
instability but since such a configuration will contain a 
negative dD/dc slope, such systems will give instabilities for 
concentrations up to the minimum value. Furthermore the 
analysis explains why some systems exhibit instability under 5. 
conditions of absorption but not desorption and vice-versa. 
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NOMENCLATURE 

Cartesian co-ordinates; 
cyhndrical’polar co-ordinates; 
non-dimensional polar co-ordinates; 
extent of the crack and remainder of the crack 
plane respectively : 
crack radius or semi-width; 
Kronecker delta; 
thermal contact resistance: 
odd function oft defined by equation (8): 
thermal conductivity: 
arccos I : 
heat flux density in ; direction; 
parameters of integration : 
temperature. 

INTRODUCTION 

IF A THERMALLY conducting solid ContainS a Small plane 
crack, the temperature field in the vicinity of the crack will 
be perturbed from that in an otherwise similar unflawed 
solid. The extreme case of a completely insulated crack 
leads to a classical mixed boundary value problem in poten- 
tial theory, a solution for the penny-shaped crack being 
given by Karush and Young [l]. However, a more realistic 
boundary condition is that of “radiation” across the crack, 
proportional to the local discontinuity in temperature. This 
leads to a mixed boundary value problem of the third type 
which is here solved for the penny-shaped crack and the 
“Griffith” crack, using a technique developed in another 
context [2]. 

The same solution applies to the problem of a cooled 
semi-infinite solid, part of whose surface is obstructed. 

It is hoped subsequently to use these results to find the 
thermal stresses in a solid containing a partially conducting 
crack. 

STATEMENT OF THE PROBLERl 

We define a system of Cartesian co-ordinates (z. r. ;) and 
polar co-ordinates (r, 0, -_) such that the crack lies in the 
plane z = 0, denoting the extent of the crack by A and the 
rest of this plane by A. 

We assume that there is a umform heat flux, C,O. in the 
z direction at the extremities of the solid, i.e. 

where T is the temperature and K the conductivity of the 
material. 

In view of the antisymmetry of the problem there is no 
loss in generality in taking 

T = 0. on .ri, (2) 

in which case the local temperatures on opposite sides of 
the crack must be equal and opposite. 

If the heat flux through the crack is proportional to the 
local temperature difference across it, we have 

yz = -2/i?- on A. : =o+. (3) 

where h is the constant of proportionality, 
Denoting the perturbation in temperature field due to the 

crack by Tr. such that 

and substituting for T into equation (l)-(3), we find 

T,=O. on -r. (6) 

(‘7, 2hT, ‘lo 

i; K K’ On 
.‘I, : = 0 + (7) 
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The problem is therefore to find a harmonic potential 
function, T,, in the half-space z > 0, satisfying the boundary 
conditions (5)-(7). These boundary conditions are also met 
in certain thermoelastic contact problems (cf equation 
(13b, c) of [2]) and we can therefore make use of existing 
solutions for the cases where A = /I/ < a and 1x1 < a, corre- 
sponding to the penny-shaped crack of radius a and the 
Griffith crack of length 2a respectively. 

THE PENNY-SHAPED CRACK: A - lr/ < (I 

Following the same procedure as in [2), we can satisfy 
equations (56) by representing the distribution of tem- 
perature r, (r, z) in z > 0 as 

1 

s 

+, 
T,(r, z) = Y 

j(r) dr 
21 -t [~~+({+it)~]~’ 

(8) 

where p = r/a; [ = z/a and j(t) is an odd function of t to be 
determined from equation (7). This method of representation 
is developed and discussed by Collins [3] who shows that 
j(r) must satisfy the Fredholm integral equation 

2ha +’ 
j(t)-x _ 

s 

2qo at 
j(s)logls-rids = p. 

1 nK (9) 

As [ -+O, the values of the integrand in equation (8) at 
t, -t respectively become equal if t > p and self-cancelling 
if p > t. Hence, on the crack surface, 

T,(r,o+) = _ I jlt)dt “I p jtc2 -P’)’ 
O<p,il. (10) 

A convenient numerical solution can be obtained by writing 
t = cos Cp and representing j(d) in the form 

@., 

in which case the integral in equation (IO) can be evaluated 
[2] to give the set of equations 

T,$ b,jaj+(2i-l)ai=y, for i=l,2,3... (12) 
J 1 

for the coefficients a;, where 

hij = 2 
i 

1 I 

rt 4(i-j)2-1+4(i+j-1)2-l i 
(13) 

and Sij is the Kronecker delta. 
Figure 1 shows the form of the temperature profile across 

the crack for various values of the non-dimensional par- 
ameter 2ha/K. These results were obtained by truncating 
the series for j(4) to twelve terms 

FIG. 1. 
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Temperature profile across the penny-shaped crack 
for various values of the parameter 2hujR. 

For the extreme case in which the crack is completely 
non-conducting (h = 0) we find 

&jr,O’) = - 
-%0 &‘--r2), o < r < fI, 

7% 
. . (14) 

At the other extreme, when Zha/K is very large, the first 
term in equation (9) can be neglected and we obtain 

j(r) = - qor 
7C@i-?) 

(15) 

and 

-40 
T,(r, 0+) = -. 

2h 
116) 

In other words, the heat flux is scarcely disturbed by the 
crack, across which a small uniform temperature difference 
is developed. 

The temperature at the centre of the crack face, 7, (0,O’ ) 
is shown in Fig. 2 as a function of ~/XI/K, the asymptotic 
expression (16) being shown dotted. 
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FIG. 2. Temperature at the centre of the crack face, T,(O, O+). 
as a function of 2ha/K. The asymptotic expression (16). (21) 

is shown dotted. 

THE GRIFFITH CRACK: A E 1x1 i (1 

For the two-dimensional problem it is canvenient to 
represent the crack surface temperature by the Fourier series 

T,(x,O’) = t aisin(2i-l)& 0 < (b <n. 07) 
i=* 

where cos$ = .x/a. The properties of the point source and 
the condition (7) then enable us to develop the system of 
equations 

$i c,n,+(2i-l)ai=I!$$!, for i=l,2.3... (18) 
I 1 

for the coefficients ai, where 

2 

i 

1 1 
%= -; 4(i_j)z_l -ti-tj- Fi 1 

(19) 

For a detailed derivation of this result see [2]. 
The form of the temperature profile across the crack is 

broadly similar to that obtained for the penny-shaped crack 
(Fig. 1) at values of 2ha/K < 10. Limiting expressions for 
small and large values of 2hajR-the two-dimensional 
equivalents of equations (14) and (16)-are 

-qOJ(aZ--X2) 211a 
T,(x,O+) = 

K ’ 
0 < /xl d a, -K- = 0. (20) 

2ha 
-2, O<\Ixl<a, -kl>bl. (21) 

The temperature at the mid point of the crack face. Tr(O, O+) 
is shown in Fig. 2 as a function of Zhu/K. 
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